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Phase-dependent counting statistics in a short-arm Andreev interferometer
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We calculate analytically the full counting statistics for short normal metal-superconductor junctions for
arbitrary voltages and temperatures. We also consider the phase oscillations of the cumulant-generating func-
tion in Andreev interferometers. At=0 and at applied voltage much smaller than the proximity 4gpthe
current noiseP; doubles and the third current cumulaty is 4 times larger compared to the normal state; at
eV>A, they acquire large excess components. At the gap ezige) , the differential shot noisdP,/dV
exhibits sharp peak, while the differential Fano faad®/dl turns to zero along with the differential resis-
tance, which reflects the transmission resonance associated with the singularity of the density of states. At
nonzero temperaturé&;; shows a nonmonotonous voltage dependence with a dipeléad 4, the zero-bias
slope ofC5(V) is much largerup to 5 time$ than at the zero temperature.
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During last few years the statistics of quantum and ther<ial interest as the lowest-order correlation function which is
mal fluctuations of the electric current in mesoscopic systot disguised by equilibrium fluctuatiodsFirst measure-
tems has been attracted a rapidly growing attention. It wasents ofC4(V) in the tunnel junctiof have revealed a high
recognized that measuring the fluctuation properties of mesensitivity of this cumulant to an electromagnetic
soscopic conductors provide unique and important informaenvironmen
tion about correlations and statistics of charge carriers, the In normal metal(N)/superconductingS) hybrid struc-
information that is not accessible through conventional contures, the basic mechanism of charge transport at subgap
ductance measurements. An adequate and powerful theoregnergiesE <A, is due to Andreev reflection of quasiparticles
cal approach to the fluctuations was built on the concept o&t the NS boundary,i.e., conversion of electrons incident
full counting statisticgFCS), i.e., the statistics of the number from the normal side of the junction to retroreflected holes,
of particles transferred through the conductor. The concept aiccompanied by escape of Cooper pairs into the supercon-
FCS, which appeared first in quantum optics, was extendeductor. During an elementary Andreev reflection event, the
to normal electron systerhand then successfully applied to effective charge transferred through the NS interface is twice
superconducting structurés. the electron chargej.s=2e. This charge doubling strongly

The basic problem of the FCS is to calculate a probabilityaffects the current statistics in the NS junctions. For ex-
PtO(N) for N particles to pass a system during an observatiorample, it leads to a factor of two increase in the magnitude of
time to. Equivalently, one can find a cumulant generatinga zero-bias shot noise in the NS junctions as compared to

function (CGPH S(y), that in normal one$?8 At finite biases, the effective charge
_ becomes dependent on the applied voltatjejue to varia-
exd-S()]=2 P, (N)expliNy), (1) tions of the size of the proximity region near the NS bound-

_ _ _ _ ary, where the quantum coherence holds between the elec-
which determines the current correlation functions as foltrons and retroreflected holes.

lows: In the Andreev interferometersee Fig. 1, the phase re-
1 (o to A . lations between the electron and hole wave functions in the
C,= EJ dt; .. f dt((1(ty) -+ 1(ty))) normal wire can be controlled by the magnetic flux enclosed
0 0
== (911 9 X)"S(X) =0, (2 < L
where ((---)) denotes the irreducible patcumulanj of a ld
correlation function. The first two cumulantsC,;=N S 0] N
=3\ NPtO(N) and C,=(N-N)?, correspond to the average 7 ) y
currentl =(e/ty)C, and noise poweP,=(2€/t,)C,. Intense II

studies of the current noise have led to a number of interest-
ing results concerning statistical correlations in the current -~ ;1 1ne model of Andreev interferometer. A diffusive wire
transport(for a review, see, e.g., Ref),3and the effective ¢ o jengthL is attached between the normal reservoir and a short
chargeqe; transferred during an elementary transport eventgys junction of the widthd connected to a superconducting loop

The third cumulanﬁg:(N—ﬁ)3 has recently attracted a spe- with the magnetic flux.
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by a superconducting loop, which results in the periodic detics in the Andreev interferometer becomes equivalent to the
pendence of transport characteristics of the interferometer ocalculation of the CGF for an NS junction with the effective
the superconducting phase differeng@across the SNS junc- order parameted,, in the superconducting reservoir. There-
tion. Initially, the oscillations of the conductance were inves-fore our results apply to short NS junctions as well.

tigated both experimentallysee a review in Ref. }land Proceeding with calculation, we encounter a common
theoreticallyt? and, more recently, the oscillations in the cur- technical difficulty, namely, the violation of the standard tri-
rent noise were reported. angle form ofG in the Keldysh space which results from the

Motivated by the growing interest in high-order correla- gauge transformation in E@5). In such a situation, Eq4)
tion functions, we develop in the present paper a systematigannot be decomposed into the Usadel equation for the
approach to full statistics of charge transport in Andreev in-Green’s functions and the kinetic equations for the distribu-
terferometers. We adopt several simplifying assumptionstion functions, and therefore the well developed methods for
which enables us to present an analytical solution for tholving Keldysh-Green's equations cannot be applied. This is
CGF and, without a loss of generality, to clearly demonstrat@nhe reason why the FCS problem in the NS structures re-
essential features of coherent effects in the current statistiGg,jres generally a numerical analysis of the wholke4tma-
in NS structures. Our approach is based on the extendagx boundary problem; such an analysis has been carried out
Keldysh-Green techniqué;* in which the CGF is deter- so far only in the limit of small characteristic energies
mined by the equation {eV,T}<A 910
iedS 1 . In some particular cases, however, the analytical solution
-—=l(y)=— f dETr %!, 7«=o0,7%. (3) to this problem can be attained by the methods of the gener-
bdx ge alized circuit theory229Within this approach, the CGF for a
The Pauli matricesr (7) operate in the NambyKeldysh  Mesoscopic connector between two reservoirs is expressed in
space. The counting curreity) is to be found from the terms of the distributiorp(T) of the transparencies of the
quantum kinetic equatiofsfor the 4x 4 matrix Keldysh- ~conduction channels,

Green functionG in the mesoscopic normal region of the

1
interferometer confined between the reservoirs, Sx) = % f dEf dT p(T)Tr INW(E, T, y), (6)
. o o . C o 0
o0 E,G]=iaDdl, 1=0\GdG, G?=1, (4)
whereD is the diffusion coefficienty denotes spatial deriva- W= 1 +(T/4)({GL,Gr()} - 2), (7)

tive, andoy is the normal conductivity per unit length. The
counting fieldy is introduced via a modified boundary con- Whereg is the connector conductivity. Equatio8) generally
dition involving the gauge transformation of the local- applies to the normally conducting structures with arbitrary
equilibrium functionGg, e.g., in the rightR) normal reser- (7). It was also applied to the superconducting tunnel
VOir junctiong! and point contact8?? with a singular transpar-
' ency distribution localized at the junction transparency. In
é‘R(X) = expli X;-K/z)éR exp(—ix7/2). (5)  general NS structures, the statistics of conducting modes, in
. ) ) ) . ) contrast to their behavior in normal structufé$; do not
A brief overview of this technique in the particular case of reduce to statistics of transparencies—due to dephasing be-
normal structures is given in the Appendix. tween the electron and hole wave functions described by the
For a multiterminal structure of Fig. 1, the solution of Eq. |eft-hand sidglhs) of Eq. (4—but require the knowledge of
(4) must be found separately in each arm of the interferomyy|| scattering matrices. However, if the characteristic ener-
eter, taking into account the matching condition following gies are much smaller than the Thouless enefgy, T}
from the Kirchhoff's rule for partial counting currents at the <g_ =#D/L2, the dephasing term in Eq4) can be ne-
node:® The problem simplifies if the junction length is  glected, and the transparency statistics for a normalZire
much smaller than the length of the interferometer wire  can pe applied to the NS structure. In long junctidns; &,
(or, more precisely, in the case where the wire resistancgnhere the Thouless energy is smék, <A, the quasiparti-
dominates the net interferometer resistgniethis case, the ¢le spectrum is structureless at small energigss Eqp,
wire weakly affects the spectrum of the junctibhwhich  \yhich results in linear voltage dependence of the CGF and,
thus can be considered as an effective (eftreservoir. Cor-  correspondingly, of all cumulants av< E;, 14 In the oppo-
respondingly, the functiols, which imposes the boundary site limit, eV> E+, the CGF for a long junction can be found
condition to Eqy(4) at the junction node, is to be constructed within the so-called “incoherent” approximatiéh,by ne-
from the Green and distribution functions taken at the middleglecting the contribution of the coherent proximity region.
of a closed equilibrium SNS junction. Furthermoredifis =~ The calculations in Refs. 14 and 25 lead to the conclusion
much smaller than the coherence lendtx VAD/A, these that the FCS exhibits the reentrance effect: In both limits,
Green functions take the BCS form, with the phase-eV<Er, andeV>Eq, it is described by the same expres-
dependent proximity gap ,=A|cod¢/2)|.18 This results in  sion forS(x). An interesting situation occurs in NS junctions
the BCS-like singularity at the gap edge in the density ofwith opaque interfaces dominating the net resistZfde.
stateg DOS) of the normal wire and suppression of the DOSthis case, the crossover between the coherent and incoherent
at E<A 4. Within such model, the problem of current statis- transport regimes occurs at very small voltage of the order of
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the inverse dwell time of quasiparticles confined between the2 In w?, and then, integrating ovdrin Eq. (6), we arrive at

interface barriers.

In our work we focus on short NS junctions with the
length smaller thag, and, correspondingly, with large Thou-
less energyEr,> A, In such situation, the energy region of
negligibly small dephasind; < Eq,, overlaps with the region

E>A,, in which the NS junction behaves as the normal

system. This enables us to apply E6). and the transparency

statistics for diffusive normal conductor at arbitrary voltages

the final expressions for the CGF,

_9b (7
S(X)—4e2 . dE SE,y), (17
e 27,  E<A,, 18
S( 1)()— 03_'_0%, E>A¢, ( )

and temperatures, and obtain the analytical solution of thevhere the quantitieg and 6, are given by explicit relations,

FCS problem in the full range &f andT.

The calculation of the integrand in E@) is performed as
follows. The Keldysh-Green functiog(y) in the normal
reservoir is traceless in the Keldysh space and therefore
can be expanded over the Pauli matrieess

Gr(Y) = TG+ 08), G:d,=0, Gi+G;=1, (8
where 7 is the vector of Pauli matrices, and the vectors

g1.(x) are expressed through the local-equilibrium distribu-

tion functions in the voltage biased electrode. In the subgap

energy regionE<A,, the functionG, at the junction node

is the unity matrix in the Keldysh space proportional to the

Nambu matrix Green'’s functiog,

éL =g=0y%, §°=1, 6,=arctanfiE/A,). (9)

Then the calculation of the trace in the Nambu space in Eq.

(7) is reduced to the summation over the eigenvalues
=+1 of the matrixg,

Tr InW:EU Tr,InW,, W,=a+ 7D, (10)

a=1-T/2, b=(T/I2)(oG,~ig,sinh6,). (11
Noticing that any 2 2 matrix can be expressed in the expo-
nential form as

W, = expn w+ ¢p), w2=a2-b? (12

coshe =alw, b:ﬂ;/wsinhgo, Trp=0, (13

where w is independent ofr due to orthogonality of the
vectorsg; and g,, one easily obtains Tin W,=In w? and

Tr INW=2 In w2, At E>A,, the functionG, is traceless in
the Keldysh space,

GL=8(76), §=0%%, 6,=arctankidJE), (14)

where the vectog is constructed from the equilibrium dis-
tribution function at zero potential. In this case, thx 4

matrix W has the formi=a-+ &5, wherea andb? are scalars,

a=1-(T/2)(1-g.g, coshb,), (15)

b?=(T12)7(§.G0)% - (G X G)? sint? 6], (16)

therefore it can also be transformed to the exponent form

similar to Egs.(12) and (13), with the traceless matrip
=gb/w sinh ¢. Following this line, we obtain Tr M/

Z(0)coslt 6=2Z(2x)coslt 6,, (19)

it Z(0)coshé, =[Z(x) + cosx - 1]coshé, (20)
ttanhg[sinh p-sinhip—iy)—i sin x]

X (1 - %‘iiisinh2 0¢>l/2, (21

04 = arctanfi(A ,/E)S9E 4], (22)

Z(x) =coshe+ cosip—iy), e:?, p:%/. (23)

By using Egs(2) and(17)—«23), one can obtain analytical
expressions for all cumulants. At zero temperature, the cal-
culation essentially simplifies. Indeed, Bt-0 andE>eV,

the dominating terms in Eq$19)—(23) are proportional to
exple), and therefored and 6. are equal tof,. This implies
that the CGF is independent of the counting field at these
energies, and all cumulants turn to zero &t eV, the terms
with exp(p—iny) dominate, and we arrive at simple rela-
tions,

cosh#=e"X coshé,, (24)

(25)

At subgap voltageeV<A,, when the charge transport &t
=0 is only due to the Andreev reflection, the currénthe
current noiseP,, and the third cumulant; read

cosh@, =X coshd, + (e7x - 1).

I=1,0(2, q(2= fz d—):(arctanhx, (26)
0

P, =2¢l - I,f(z 1], (27)

Cs=N- &[(5% -3)f(zh) +7]

3 222 ’

1 _

f(z) = 5[2— (22 - l)arctanhz™1],

Ix=0A,/e, NA= Ixty/e, z=eVIA,. (28)

At small voltageseV<A,, the magnitude of the shot noise
doubles,P,=(4/3)el, andC3=4N/15 is 4 times larger com-
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pared to the normal cadé:®2’ When the voltage increases

and exceeds the gap edgd/> A, the normal electron pro-
cesses at the energids>A, begin to contribute to the

charge transport, providing the normal-state voltage depen- %

dencies of the cumulants alv>A ;. At large voltage, the

Andreev reflected particles produce voltage-independent ex

cess components of the cumulants,

|
=gV-1,f(2+1% 1= ?(#/4— D, (29

P =2el,(Z-Df(2) + PP, P*=2el® (30)

Cs= %(u 1){(z- 1)[82/3 - (822 - 3)f(2)] - 1/3} + CZ¥,

C= (Ny/2) (7214 - 413). (31)

At T#0, we calculate the cumulant spectral densities ©)

I(E), P(E), andC(E) defined as

| = 'Af dE I(E), 1(E)=f,sinhp/z(0), (32
0
P = 2eIAJ dE P(E), C3:NJ dE OE). (33
0 0
The functionsP(E) andC(E) atE<A , read
2
P(E) = %[ZQf1 + (1 -f,)sint? p], (34)
inh
C(E) = SZ'Q—(O';[Ml sinte + (2f, + 3f5)sini? p

+20Q(3(1 -f,) —2f;)], Q=1+ coshe coshp,

(35)

whereas aE>A 4 they are given by equations

P(E) =

Z%(0)
x{Q(l +2f, - of m) +sinf p- 2(0)]
! 2coshe+1 ’
(36)
_ sinh p s
CE)= Z0)(1+ coshe) COShE){fZ(S coshe - 1)sint? p

+3[Z(0)(1 — 2f3) + Q(4(1 — f, + f5 coshe)
+ 3 coshe — 2f;) + sinl? e(2f; - coshe
+ (3 -5 coshp)f,)] + 4f;(1 + coshe)(Q + sintt €)}.
(37)
In Egs.(33)—(37), the functions
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FIG. 2. Shot noise power and third cumulant vs superconducting
phase(a), (b) and vs voltage(c), (d) at different temperatures.
Dashed lines are voltage dependencies in the normal stdte Gt
In the panel(d), zero-bias slopes of the normalizegh(V) are
indicated.

_ fl_ 1
~sinit 6,

_ f2_ 1/3
~sin? 6,

fl = 04, coth 0¢,, f2 (38)

3

describe energy variation of quasiparticle spectrum which is
most essential in the vicinity of the gap edyg.

As shown in Figs. @) and 2b), the cumulants oscillate
with the phase and exhibit deep minima é&tmod 27 =,
when the gap closes and the cumulants approach their nor-
mal values. When the proximity gap, approachesV,
P,(¢) exhibits a peak, while&C;(¢) shows a step-like struc-
ture. Shown in Figs. @) and 42d) are voltage dependences
of the cumulants for different temperatures plotted as func-
tions of variables that provide the universality of the curves
for any ¢. As the temperature increases, the current noise
approaches finite value alv=0 due to thermal fluctuations,
and exhibits quadratic dependence on the applied voltage at
eV<T. Within the intermediate voltage region<eV<A,,
P,(V) becomes linear with doubled slope produced by the
Andreev reflected particles, andeif> A, the slope turns to
its normal-metal value. A considerable excess noise at large
voltages is contributed by both the thermal fluctuations and
Andreev reflection. A more interesting behavior is discov-
ered for the third cumulant. At nonzero temperature, the
zero-bias slope of the normaliz€z}(V) is much larger than
at zero temperatur@ip to the factor 5 which is similar to the
normal structure, approaching the value 4/3. At larger
voltages,T<eV<A,, the slope of the normalize@;(V) re-
turns to the value 4/15 found fd@r=0. AteV~ A, the curve
Cs(V) showsN-like feature, and finally, aeV> A, it ap-
proaches a straight line with th@ormal-statg slope 1/15.
Such a behavior indicates th@g acquires anomalously large
thermal component at voltags/~ A, which, however, rap-
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quantities oscillate with the phase difference across the junc-
tion and show nonmonotonous voltage dependence in the
vicinity of the proximity gap edge, which reflects resonant
transmission of the structure at the singularity of the density
of states.

This work was supported by the U.S. Department of En-
ergy, Office of Science under Contract No. W-31-109-ENG-
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FIG. 3. Effective transferred charde), differential noise(b), APPENDIX
and differential resistana@nse? vs voltage ai$=0 (solid lineg and In this Appendix we outline, for reference purposes, the
¢=0.7m (dashed lines T=0. procedure and summarize the results of calculation of the

. CGF for a diffusive connector between normal reservoirs, by
idly decreases aV>A, and/orT> A, towards the normal  sing the extended Keldysh-Green’s technique. For general-
metal level. ity, we consider a diffusive wire interrupted by tunnel barri-

The singularity in the DOS at the proximity gap edge ers, which enables us to present several original results and
produces interesting features of the differential transporty examine various limiting situations.

characteristics of the interferometer shown in Fig. 3. First, In normal systems, the matricés and] are traceless in

we note that the differential resistanég=dV/dl turns to the Keldysh space and therefore they can be expressed

zero ateV=A4, [see inset in Fig. @), which is explained by through 3-vectors with the components diagonal in the
full transmission of the NS junction at the resonant energy -

A, Correspondingly, the differential Fano factdP,/di ~ Nambu spaceG=gr, 1=I7, where 7 is the vector of the
=R4(dP,/dV), which is commonly interpreted as effective Matricesr, andg“=1. Since the Ihs of Eq4) turns to zero in
transferred chargege=(3/2)dP,/dl, also tumns to zero, normal systems, the formal solution of Ed) for the matrix
0err=0e, while the differential noise normalized in a similar current densityty in each segment of the wire can be easily
way, (3R/2)dP,/dV, shows a large peak of the height.3 obtained,

Thus we conclude that none of these quantities can be un-

ambiguously associated with the physical elementary trans-  'N=9n In GiG, =gy IN[G:G, +i7(G1 X G2)] = 7,
ferred charge, but they rather reflect the energy variation of R
the transmission characteristics. Similar effects have been In=ignPdN, &y = arccosgy Gy, (A1)

predicted for an NS structure with opaque interf8&egere .
a considerable enhancementdf,/dV and suppression of wheregy is the conductivity of the wire segmei@, , are the
dP,/dl occur, however, at small applied voltage determinedGreen’s functions at the left and right segment edges, respec-
by large dwell time of quasiparticles. tively, ¢y is the angle between thieomplex unit vectorsg,

It is instructive to compare our analytical results for short-and g,, and p=(g,_ X gr)/sin ¢y is the unit vector perpen-
arm interferometers with that obtained numerically for longdicular tog; andg».

NS junctions with a small minigagy~ Er,<A. The results The matrix current through the tunnel barrier can be
are qualitatively similar: in long junctionsl; is equal to 2 expressed in terms of Green functiofis and G, at the

ateV<E, and has a minimum la(r)in Eg_((ﬁ)’ Wh'Ch MOVES " |eft-hand and right-hand sides of the barrier by using the
towards small voltage a#h— 7;*° the differential noise is boundary conditioR?

also nonmonotonous and approaches maximume¥t
~5E,.°2 After this comparison we see that the proximity gap . Og .~ = -
A, in short junctions plays the role of the minigkpin long lg=lg+ = E[G-’GJ =g,

junctions and determines the feature in the effective charge,

though this feature aV~ Ey in long junctions is much less - .
pronounced. However, as noted above, a qualitative differ- lg=iggp Sin ¢g, g =arccosy-g., (A2)

ence of long junctions_ is the existence of an intermediat‘?/vhereﬁz(g_x§+)/sin &g andgg is the barrier conductance.

mcoherent voltage regloEg<§V< A.’ Wherg both'the effec- The conservation of the matrix current along the connec-
tive charge and the normalized differential noise have the - .
value 2, and their crossover te occurs only agV=A.23 tor, I=const, following from Eq(4) and the boundary con-

In conclusion, we have studied the full counting statisticsdition in Ed. (A2), results in conservation of the vector cur-

of a short diffusive NS junction and apply the results to therent, |=Iy=Ig=const. This implies that for all elements of
Andreev interferometer. Assuming the size of the structure téhe connector, the unit vectorg coincide, therefore the
be much smaller than the coherence length, we calculate@reen’s vectorgj lye in plane, and the vectqy can be con-
analytically the cumulant-generating function for arbitrary structed from known Green’s vectogs andgg in the reser-
applied voltage and temperature. We studied in detail thaoirs, p=(g. X gr)/sin ¢, where ¢ is the angle betweegq,
second(the current noiseand the third cumulants. Both andgp,
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¢ =arccofl +P_,(€X- 1) + P,_(eX - 1)], F=(2/3(1+2B;), B,=> rp, (A12)
k

Poor =No(1=Ng1),  N-=ne(E), n,=ne(E+eV). which varies between the Poissonian vafe2 for the tun-

(A3) nel connector and 1/3-suppressed vakie2/3, in the ab-

From the current conservation, we also conclude that all elSence of barriers. The third cumula@ varies betweerN
ements are characterized by a single variaple for Poissonian statistics in the single barrier case HAH5
for a diffusive conductor,
s SiN ¢g = gnen = 977 = CONSt, (A4)

where the normalization constagtis chosen to be equal to Cs(V,0) = E[1 +10B5(1+4B;) —36Bs].  (A13)
the conductance of the whole connector. Thus, the vector 15
current is given by

It is interesting to note that EqA7) can be easily trans-
formed into equation for the transparency distributjit),
=T (G, x Ga). (A5) by making use of the relation of the generalized circuit
" sin qb - ;
theory between the counting currdiy) and the matrix cur-
The planar rotation of the Green’s vector results in the addirent| following from Egs.(6) and(3),
tivity of the angles between all consecutive vectgrshere-

1(” -
fore the sum of these angles is equaldto () = — dETr 7,0, (A14)
4e ),
2t X de=9, (A6)
wires barriers 1
which leads to the equation for the parameiée), I= gf dT p(MT [éL,éR(X)N\rl. (A15)
0

+ arcsi = ¢, - . . .
INT % ney) = & Rewriting these equations in the vector representation, com-

paring them with Eq(A8), and introducing the variable
=(1-g,gr)/2, we obtain the equation fox(T),

JleTp(T)_ 7
o 1-2T  2yz(1-2)'

w=RJ/R, w=RJ/R W+ n=1, (A7)
k

Al16
whereRy is the net resistance of all wireR, is the resis- (A16)

tance of thekth barrier, andR=g™. _ _ -
By using the definitions in Eq3), we obtain the counting Where 7 obeys Eq(A7) with the function¢(z)=2 arcsinz
electric current(y) and the CGF, on the right-hand sidérhs). The solution of Eq(A16) has
the formp(T)=Re 7/27Ty1-T, where#%(T) is the solution

of Eq. (A7) with the functionz+2i arccosk1/\T) on the
1(x) = —f X Gr)xs (A8) mszg (A7 i (A
In some limiting cases, one can obtain an analytical solu-
gt r 7P 1- \m t|0n_of Eq.(A7). In particular, |_f the numbeM of the_z b:_’;\rrl-
Sy) = dE Tr + ersis largeM > 1, then the resistance of each barrier is small
4 2 k Mk compared to the net resistané®,<R. In this case, the ap-

(A9) proximate solution of Eq(A7) is n=¢, and the CGF coin-
cides with that for diffusive wire, Eq(A10). In the tunnel
We note that the statistics are insensitive to the position ofimit, when the resistance of each barrier much exceeds the
the barriers and depend only on the barrier resistances amgt resistance of diffusive segmer&> Ry, the first term in
the net resistance of the diffusive part of the connector. In th&q. (A7) can be neglected. Then an analytical expression for
absence of barriers,— 0, the CGF reads the parameter; and the CGF at arbitraryl can be obtained
in the case of equivalent barrierg=1/M,

S(x) === | dE ¢ (A10) — arccose¥'?
892 7=M sin&, SO = NM? sirP=—"=— (A17)
At zero temperature, the integration over energy in @®)
can be explicitly performed, when the Fano factor is given By=(2/3)(1+2/M?). In the

_ limit of a large number of the barrier§)>1, we return to
the diffusive statistics, while for single-barrier structuké,
=—|rnyi2 + 1-N1-rn9)ir All —
S0 = [ N E (@-v kﬂz) k] ( ) =1, we obtain Poissonian statisticXy)=N(eX-1).
_ At arbitrary temperature, the cumulants can be found ana-
whereN=gVty/e. From Eq.(A11) we find the Fano factofF  lytically by asymptotic expansion in EgGA\7) and(A9) over
in the shot noise powd?, =eFl, small » and y. In particular, the noise power,
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According to Eq.(A21), the vectorg, depends on all
counting fieldsy,, which reflects cross correlations between
the currents in different connectors. For the system of tunnel
connectors, where the quantitiés are equal to the conduc-
tancesy, and therefore become independenypthe CGF at
zero temperature can be explicitly evaluatéd,

V ——
St = z—tgwl +43 54, 1),

4T
PV,T) = | (L + 233)2 cothg +2(1-By) |,
(A18)

exhibits crossover between the shot noisd &eV and the
Johnson thermal nois®;=4T/R at large temperaturel
>eV. The voltage dependence of the third cumulant,

(A22)
sinhp-p
p sinkP(p/2)’
(A19)

2_

Ca(V.T) = Co(V,0) + ZN(1 - 1085 + 9Bs) where 9,=0,/G, G=;gg, and the indexV denotes the
voltage biased electrode.

For arbitrary connectors, the cumulants can be found from
— asymptotic solutions of the equations fgg andg, at small
is linear in both limits and approach@s/3)(1+2B3) at high . For instance, the partial current througth connector is
temperatures. In the absence of barri@s=0, Eq. (A19) I,=Vg,0y, and the Fano factors defined &g s=(2eill,)
reproduces the result of a modified kinetic theory of fluctua-x (9l ,{x}/ dx) o read
tions for a diffusive wire

In order to access FCS in multiterminal structures, whichg
consist of a set of connectors attached between several nor-"
mal electrodes and a diffusive islaidode with negligibly
small resistance, separate counting fielgsand parameters
7, are to be introduced in each aff,

4_ 4. .,
=(2- Egv Sap— ggﬁ[l +0y(Bs, + Bag) — Bay(1 - gy)

-ov> @837} . (A23)
y#V

. The diagonal elements,, of the matrixF,; have the
1,=1E(0, X 00, &E.=0.7.8IN ¢, meaning of the Fano factors for the shot noisenth con-

. , o nector and may vary between 2/3 and 2. For a large number
The quantitiesr, obey the equations similar to EGA7),  of the terminals, when the normalized conductangede-

with the angl§s¢a:arcco$§a§c) in the rhs, where the come small, they approach Poissonian vafg=2. The
Green'’s vectol, at the node can be found from the Cu”entcross-correlatorﬂ;:aﬁ(a#B) between the currents in differ-

(A20)

conservation lawx,, |,=0,

g.= é/\/GTZ, G=> &6, (A21)

ent terminals are negative due to Pauli princf§lén a par-
ticular case of diffusive connecto(B,=0), Eq.(A23) repro-
duces the result of Ref. 30 for a so-called star-shaped
geometry.
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